
Delay- and Cost-Aware Dynamic Service
Migration in Collaborative Satellite Computing

Weiwei Gao1(B), Ao Zhou1, Jianing Tang1, Yuanzhe Li2, and
Shangguang Wang1

1 State Key Laboratory of Network and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing, China

{weiweigao, aozhou, tangjianing, sgwang}@bupt.edu.cn
2 Institute for AI Industry Research (AIR), Tsinghua University

liyuanzhe@air.tsinghua.edu.cn

Abstract. The renaissance in aerospace technology positions satellite
computing as a promising frontier. Due to the wide coverage of satellites,
users in remote areas can request computing services even if there is no
terrestrial infrastructure. Most existing studies focus on computation of-
floading, neglecting the service migration issues that state dependency
induces. This paper focuses on user-dependent state information services.
Due to the periodic motion of satellites, they will move away from the
users. Users may frequently change satellites to achieve a lower delay,
but this behavior can cause tremendous network pressure. Addressing
this problem poses challenges due to the limited onboard resources and
the high computational complexity of optimal node decision-making. Our
approach first aims to minimize delay under the constraint of long-term
costs. Second, we employ Lyapunov optimization to stabilize long-term
costs and decouple the problem into a more manageable single-slot prob-
lem. Since the decomposition problem is NP-hard, we use a distributed
approximation-based best response update to reduce computational com-
plexity. Additionally, we propose a dynamic programming-based offline
service migration algorithm, assuming complete information availabil-
ity. The simulation results demonstrate the effectiveness of the proposed
offline and online algorithms.

Keywords: Satellite computing · Delay sensitive · Service migration ·
Cost optimization

1 Introduction

With the rapid development of aerospace technology, emerging low-Earth orbit
satellite constellations perfectly complement terrestrial networks by providing
services to areas beyond terrestrial coverage. Furthermore, advances in Com-
mercial Off-The-Shelf (COTS) hardware have enhanced satellite computing ca-
pabilities [2], promoting the development of space intelligence applications such
as processing space-native data [10, 31], supporting multi-user interactions [28],

2 Weiwei Gao(B), Ao Zhou, Jianing Tang, Yuanzhe Li, and Shangguang Wang

Orbit

direction
t-th slot t+1-th slot Orbit

direction

1SAT 2SAT
0SAT3SAT

: Ground user : Satellite : Sever

Time slot

change

: Inter-satellite link : User-dependent status data : Offloading data

2U1U
3U

Fig. 1. A scenario of dynamic service migration.

managing content distribution networks [18], and analyzing offloading data for
Internet of Things users in remote areas [14,29].

Figure 1 shows the user-dependent state information task offloading scenario.
Taking the ground user U2 as an example, the satellite SAT2 provides a service
for the user U2 in the time slot t. Since the motion of the on-orbit satellite is
periodic, at time slot t+1, satellite SAT2, which might be located far from user
U2. In this case, user U2 has three options: (1) continue to obtain services from
satellite SAT2, which may require multi-hop inter-satellite links (ISLs) to access.
Option (1) does not require data migration, thus avoiding delays and bandwidth
costs brought by migration. However, this option may result in relatively long
communication delays. Option (2) transfers the unfinished computation data of
user U2 and migrates the user-dependent state information to another satellite
node such as satellite SAT1 where the service required by U2 is already deployed.
Although option (2) does not require service deployment costs, it incurs migra-
tion delays and network bandwidth costs. Option (3) selects a satellite such
as SAT0 that does not have the service deployed but has sufficient computing
resources and is in proximity to the user. Option (3) incurs migration delays,
network bandwidth costs, and service deployment costs; however, it may reduce
computing and transmission delays. Exploring how to provide low-delay services
to users through collaboration on satellite edge nodes, while adhering to cost
constraints, presents worthwhile research.

This paper investigates the delay- and cost-aware dynamic service migra-
tion to ensure service continuity and low delay for ground users in collaborative
satellite computing. However, addressing this problem entails the following chal-
lenges: First, onboard resources such as bandwidth and computing resources
are limited. Users with low delay requirements may access services from nearby
computing nodes [15]. For user-dependent state information, migrating this state
from one satellite node to another consumes significant bandwidth on the ISLs
and depletes the resources of both the source and target satellite computing
nodes. Active connections between satellite nodes must be maintained during

Title Suppressed Due to Excessive Length 3

data migration. Although recent studies have explored delay-aware dynamic
service migration in satellite computing [11,19,35], they either did not consider
inter-satellite collaboration or failed to constrain frequent service migration. Un-
necessary or erroneous service migration exerts additional pressure on the sys-
tem network [32]. This paper addresses both the costs faced by satellite network
providers and the low latency requirements of users. Second, high algorithmic
complexity. Given the vast scale of satellite constellations, sequentially searching
for the optimal computing nodes significantly increases the algorithmic complex-
ity, and improper service migration strategies further burden the network. We
formulate this problem as an integer programming problem, known to be NP-
hard [27]. Recent methods, including Gibbs sampling [9] and branch and bound
techniques [8], address these integer programming challenges. However, these
approaches require substantial computing resources and entail lengthy solution
times.

To address the first challenge, we apply the Lyapunov optimization theory
to ensure that the network costs for the operator remain stable under long-
term constraints and decouple the long-term optimization problems into a more
manageable single-slot problem. To address the second challenge, we employ
a distributed approximation-based best response update technology to reduce
computational complexity.

The contributions of this paper are summarized as follows:

– To avoid frequent migrations in pursuit of low delay within collaborative
satellite computing, we consider the constraints of long-term service migra-
tion costs. Assuming all relevant information is known, we transform this
problem into the shortest path problem and propose an offline service mi-
gration algorithm based on dynamic programming.

– In the absence of prior information, we initially apply Lyapunov optimization
to ensure the stability of long-term costs and decompose the problem into a
series of single-slot problems. We adopt a distribution approximation-based
best response update to reduce computational complexity.

– The simulation results demonstrate that the proposed offline and online al-
gorithms significantly outperform the benchmarks.

The remainder of this paper is organized as follows: Section 2 summarizes
related work. Section 3 describes the models and formulates the problem formu-
lation. Section 4 discusses the algorithm design for offline service migration based
on dynamic programming and online service migration based on Lyapunov. Sec-
tion 5 presents the simulation results. Section 6 is the conclusion and future
work.

2 Related Work

In this section, we review related work and categorize it into two primary ar-
eas: dynamic service migration in mobile edge computing and dynamic service
migration in satellite computing. Detailed analysis follows.

4 Weiwei Gao(B), Ao Zhou, Jianing Tang, Yuanzhe Li, and Shangguang Wang

2.1 Dynamic Service Migration in Mobile Edge Computing

Service migration in mobile edge computing is a highly relevant topic, motivated
primarily by the limited coverage of the ground network infrastructure and user
mobility. Given the unpredictability of ground user mobility patterns, Ksentini
et al. [16] analyzed user-specific one-dimensional mobility patterns. For a more
realistic approach, Wang et al. [33] formulated the service migration problem as
a Markov decision process based on two-dimensional user mobility patterns and
devised an optimal service migration strategy. Wen et al. [34] used federated
learning to protect user data privacy. In addition, unnecessary or erroneous ser-
vice migrations place significant pressure on the network. To mitigate this, Liu et
al. [22] focused on service quality in a distributed multi-user scenario, employing
a counterfactual multi-agent reinforcement learning approach to minimize task
completion times within energy constraints. Tuli et al. [32] introduced a pre-
emptive migration technique using generative adversarial networks to predict
when to migrate, although it does not determine where to migrate. Conversely,
Kim et al. [15] addressed the problem of when and where services would mi-
grate. Under resource limitations, they modeled the problem as an integer linear
programming problem and implemented a heuristic solution. Josh Mwasinga et
al. [25] utilized a deep Q-network (DQN) to balance quality of experience (QoE)
against migration costs. Despite these valuable insights, these approaches are
not directly applicable to satellite scenarios. Because the main consideration on
the ground is predicting the user’s movement trajectory, in the satellite scenario,
since the satellite moves much faster than the user, we can assume that the user’s
geographical location is stationary.

2.2 Dynamic Service Migration in Satellite Computing

With commercial COTS hardware’s advancement, satellite computing capabil-
ities will increase. Users in remote areas without ground infrastructure offload
data to satellites within sight for processing [4, 29, 38]. Furthermore, to achieve
inter-satellite load balance, some works proposed the use of inter-satellite as-
sisted computing to complete the offloading task [6, 36, 37]. These studies as-
sume that the service is already deployed on the satellite. Therefore, when a
user switches to the satellite computing node, there is no need to migrate the
user-dependent state data. Recently, some researchers have begun to focus on
the service migration problem in satellite computing. Deng et al. [11] proposed a
bandwidth-aware service migration problem aimed at minimizing the long-term
total delay of the system, under the assumption that all tasks meet their dead-
lines. Han et al. [12] utilized real-time traffic data from the satellite network
and performed service migration in response to changes in uplink and downlink
traffic. However, the above studies did not consider potential collaboration be-
tween satellites. We must fully leverage computing resources across satellites to
increase the efficiency of on-orbit satellite resources.

Unlike the work mentioned above, our work concentrates on inter-satellite
cooperative service migration. To prevent frequent migrations by users seeking

Title Suppressed Due to Excessive Length 5

low latency, this paper considers long-term migration costs as a constraint to
minimize the delay. Depending on the availability of the required information,
we propose two approaches: an offline service migration method based on dy-
namic programming and an online service migration method using Lyapunov
optimization.

3 Models and Problem Formulation

3.1 Scenario Model

We consider a scenario in an integrated satellite-terrestrial network, as shown in
Fig. 1. In this scenario, ground users in remote areas lack access to ground net-
works due to the absence of ground infrastructure. Furthermore, resource limita-
tions prevent these users from processing computing tasks locally, necessitating
reliance on satellites equipped with servers to provide network and computing
services. For example, in the power grid system, to respond to fluctuations in
energy demand, grid data must be regularly offloaded to satellites for analysis.
This process enables automatic adjustments to the power supply during peak
hours or the initiation of demand response strategies. Each ground user offloads
tasks to a satellite within its coverage range through a wireless link in the Ka-
band [30]. Without loss of generality, we assume that each user initially chooses
the satellite closest to the distance. Additionally, considering the satellite’s or-
bital speed of 7.3 km/s [3], the satellite may move out of the user’s coverage range
over time. To ensure service continuity and meet the low delay requirements of
these ground users, it may be necessary to migrate the computing service to
synchronize user-dependent status information.

In our scenario, we assume a constellation of S = {1, 2, . . . , s, . . . , S} satel-
lites, where S consists of P orbital planes, each containing N satellites. Define
U = {1, 2, . . . , u, . . . , U} as the set of all remote ground users. Let D = {dts} (s ∈
S, t ∈ T) represent the deployment of the service in the satellite network, with
dts indicating whether the required service is deployed on the satellite node s
during the time slot t. If the required service is deployed on the satellite node s
at time t, then dts = 1; if it is not deployed, then dts = 0. Let xt

u,s represent the
binary decision variable for user u selecting the satellite node s for computation
at time slot t. Users’ computing satellite node selection decision can be denoted
by Xt = (Xt

1, . . . , X
t
u, . . . , X

t
U), X

t
u = (xt

u,1, . . . , x
t
u,s, . . . , x

t
u,S). We assume that

in each time slot t, each user is served by exactly one satellite node. Therefore,
for user u, the decision to select a computing satellite node has the following
constraints:

S∑
s=1

xt
u,s = 1,∀u ∈ U , t ∈ T , (1)

xt
u,s ∈ {0, 1} ,∀u ∈ U , s ∈ S, t ∈ T . (2)

Additionally, to prevent satellite overloading, the number of ground users
served by satellite s during time slot t must not exceed Ms. Consequently, the
constraint can be established:

6 Weiwei Gao(B), Ao Zhou, Jianing Tang, Yuanzhe Li, and Shangguang Wang

U∑
u=1

xt
u,s ≤ Ms,∀s ∈ S, t ∈ T . (3)

3.2 Visibility Model

A ground user can only communicate with an LEO satellite when there is line-
of-sight visibility between them [23]. We use binary variables V t

u,s to indicate
whether ground user u and satellite s are visible to each other in time slot t; it
is 1 if both are visible and 0 otherwise. Denote Us ⊂ U as the set of ground users
within the coverage area of the satellite s. Similarly, Su ⊂ S represents the set of
satellites to which the ground user u can connect. Given the predictable orbits
of the satellites, we can utilize the StarPerf software to simulate the coverage
of specific users by the satellites in each time slot [17].

3.3 Network Model

We use a time-varying graph to represent the dynamic nature of satellite-terrestrial
integrated networks. The links between satellites and ground users can change
in minutes, whereas the network topology of the entire satellite constellation
remains relatively stable over short periods. Therefore, we discretize time, rep-
resenting the network topology within a time slot t ∈ T = {1, 2, . . . , t, . . . , T} by
a graph Gt = (V,Et), where T , the mission period, is sufficiently long to guaran-
tee service periods for each ground user. The vertex set V includes all satellites
and geographically distributed ground users requesting services from the satel-
lites. The edge set Et denotes the connectivity between vertices for time slot t.
An edge eti,j ∈ Et, where i, j ∈ V , signifies an accessible link between node i and
node j in time slot t, potentially representing either an ISL or a user-satellite
link (USL). Moreover, the well-known cross-grid (+grid) connection method is
used between satellites [13]. Each satellite is connected to its four neighboring
satellites: two in the same orbit and two to its left and right.

3.4 Task Model

In each time slot interval △t, ground user u offloads a task by choosing an access
satellite in the shortest distance, and then the access satellite routes the task
data to the selected satellite computing node through the ISLs. The task from
ground user u is represented by a 3-tuple (ptu, c

t
u, T

t,max
u), where ptu denotes the

task size in bits, ctu represents the CPU cycles required to process one bit, and
T t,max
u indicates the maximum tolerable delay.

3.5 Delay Performance

Computation Delay We assume that each satellite is equipped with a server
that can provide computing resources to tasks from different ground users si-

Title Suppressed Due to Excessive Length 7

multaneously. The computation delay of user u is given by:

T t,comp
u =

S∑
s=1

xt
u,s

∑U
u=1 x

t
u,sp

t
uc

t
u

f t
s

,∀u ∈ U , t ∈ T , (4)

where f t
s is the computing capacity (in CPU cycles per second) of satellite s.

Communication Delay The communication delay between the ground user u
and the computing satellite node s consists of two parts: the transmission and
propagation delays from the ground user u to the access satellite s0, and from
s0 to the computing satellite node s. For the wireless transmission from ground
user u to access satellite s0, let hu,s0 be the channel gain between user u and
access satellite s0, and let pu be the transmission power of user u. Denote BKa

is the total bandwidth of the Ka-band, and let N denote the additive white
Gaussian noise (AWGN) at satellite s0. The transmission rate from user u to
access satellite s0 can be expressed as [4]:

Rt
u,s0 =

BKa∑U
u=1 x

t
u,s0

log2 (1 +
pu |hu,s0 |

2

N
),∀u ∈ U , s0 ∈ S. (5)

If the access satellite s0 is not a computing node, the task is offloaded to
the computing satellite node s through the ISLs. Then, the transmission rate
from the access satellite s0 to the computing satellite s can be expressed by the
following formula [37]:

Rt
s0,s =

ps0Ls0,sGTR
s0

GRE
s

kT [E/(N ′ +N0)] ·M
,∀s, s0 ∈ S, t ∈ T , (6)

where ps0 represents the transmission power of access satellite s0, G
TR
s0 and GRE

s

represent the transmission antenna gain of access satellite s0 and the receiving
antenna gain of computing satellite s, respectively. The constant k denotes the
Boltzmann constant, T is the noise temperature, and E

N ′+N0
is the required

ratio of received energy per bit to a specific noise density. M represents the link

margin and Ls0,s =
(

c
4πds0,sf

)2

represents the loss of the ISL path, where c is

the speed of light, f is the carrier frequency, and ds0,s is the distance from the
access satellite s0 to the computing satellite s. If s0 = s, then ds0,s = 0.

Given the service request size, ground user, and satellite constellation lo-
cation information in each time slot t, the transmission delays T t,trans

u,s0 from
ground user u to access satellite s0 and the transmission delays T t,trans

s0,s from
access satellite s0 to computing satellite node s can be denoted as the following
equations respectively:

T t,trans
u,s0 =

ptu
Rt

u,s0

,∀u ∈ U , s0 ∈ S, t ∈ T , (7)

T t,trans
s0,s =

ptu
Rt

s0,s

,∀s, s0 ∈ S, t ∈ T , (8)

8 Weiwei Gao(B), Ao Zhou, Jianing Tang, Yuanzhe Li, and Shangguang Wang

if s0 = s, then the transmission delay T t,trans
s0,s = 0.

The transmission delay from user u to the computing satellite node s can be
calculated using the following formula:

T t,trans
u,s = T t,trans

u,s0 + T t,trans
s0,s . (9)

The propagation delay for user u to offload the task to access satellite s0 can
be expressed as:

T t,prop
u,s0 = du,s0/c, (10)

where du,s0 represents the distance between the ground user u and the access
satellite s0 and can be represented as:

du,s0 =
√
R2 + (R+H)2 − 2R(R+H) · cosγ, (11)

where R represents the radius of the earth, H represents the orbital altitude of
the satellite, and γ represents the geocentric angle.

Assume that the path of the user u’s computing task through the satellite
node i is expressed as Nu =

{
qiu | i ∈ {1, . . . , i, . . . , I}

}
. Then, the propagation

delay between the access satellite s0 and the computing satellite s can be denoted
as:

T t,prop
s0,s =

I−1∑
i=1

T t,prop

qiuq
i+1
u

, (12)

where T t,prop

qiuq
i+1
u

is the propagation delay of one hop along qiu.

The propagation delays from user u to the computing satellite node s can be
calculated using the following formula:

T t,prop
u,s = T t,prop

u,s0 + T t,prop
s0,s . (13)

Since the size of the computation results is much smaller than the data size
of the task input and the downlink rate is significantly higher than the uplink
rate, the transmission delay from the computing satellite back to the user can
be ignored [38]. However, due to the considerable distance between satellites and
users, the propagation delay of the satellite-user link cannot be ignored. Assume

that in time slot t, the routing path Et
s,u =

{
ets,i1 , e

t
i1,i2

, . . . , etik−1,ik
, etik,m, etm,u

}
for transmitting the computing result from satellite s to user u passes through
user access satellite m. Let DEt

=
{
dti,j | i, j ∈ V, i ̸= j, eti,j ∈ Et

}
represent the

distance between node i and node j in the graph at time slot t. Therefore, the
propagation delay of the result from the computing satellite s to the user u is
given by:

T t,prop
s,u =

∑
eti,j∈Et

s,u

dti,j
c

. (14)

The communication delay from ground user u to computing satellite node s
can be expressed as follows:

T t,comm
u,s = T t,trans

u,s + T t,prop
u,s + T t,prop

s,u . (15)

Title Suppressed Due to Excessive Length 9

When considering the satellite node selection decision, the communication
delay experienced by ground user u can be further described as follows:

T t,comm
u =

S∑
s=1

xt
u,sT

t,comm
u,s ,∀u ∈ U , t ∈ T . (16)

3.6 Migration Delay and Cost Model

When the user changes the selected satellite computing node, additional delays
and costs are incurred due to service migration and potential service deployment.
We have completed the models for computation and communication. Next, we
introduce the migration delay model and the migration cost model.

Migration Delay Model Assume that the task ptu is processed on satellite i
in the time slot t+ 1. If the required service is not deployed on satellite i, that
is, dti = 0, the service must be quickly deployed. Subsequently, the unfinished
computing tasks and user-dependent state data must be migrated from satel-
lite s to satellite i to synchronize service status. In this paper, we adopt live
container migration technology [1]. The container itself does not store the ser-
vice configuration files for the applications within it. Checkpoint and Restore in
Userspace (CRIU) technology can save the running status information of spec-
ified processes in the system to the service configuration files. Based on these
files, the running status of the original process can be restored on other satel-
lite nodes. During the computing migration process, only the period when the
service is not running affects user-perceived latency. Therefore, we only consider
periods when the service is not operational, hereafter referred to as downtime.
After the migration is completed, unfinished computing tasks can continue to
be processed on the satellite i. In our previous computation model, we took into
account the computing delay of the entire task on the satellite node, including
the delay of the unfinished task. Therefore, after the task is migrated to a new
satellite node, the delay of the unfinished part must be subtracted from the pre-
vious total computing delay, and the delay of this unfinished part must be added
to the new satellite node.

At time slot t, user u’s unfinished tasks size can be expressed as follows:

pt,mig
u = min

{
ptu,max

{
0, ptu(1−

△t− T t,comm
u

T t,comp
u

)

}}
. (17)

Therefore, the migration delay of user u can be expressed as follows:

T t,mig
u =

S∑
s=1

xt
u,s

S∑
i=1

xt+1
u,i θtδs,i +

S∑
i=1

xt+1
u,i

∑U
u=1 x

t+1
u,i p

t,mig
u ctu

f t+1
i

−
S∑

s=1

xt
u,s

∑U
u=1 x

t
u,sp

t,mig
u ctu

f t
s

,∀u ∈ U ,

(18)

10 Weiwei Gao(B), Ao Zhou, Jianing Tang, Yuanzhe Li, and Shangguang Wang

where θt represents the downtime for computing migration, δs,i is the Kronecker
delta function that describes whether satellite i and satellite s are the same

satellite. The function is defined as δs,i =

{
1, s ̸= i,
0, s = i,

∀s, i ∈ S.

Cost Model Although satisfactory service quality is provided to users by mi-
grating service profiles between satellite nodes to adapt to the periodic movement
of satellites, service migration between satellite nodes incurs additional costs. For
example, migrating across satellite nodes results in heavy network bandwidth us-
age due to the data of users’ outstanding tasks at time slot t and each user’s
service profile, in addition to the deployment cost of new services.

Migration Cost Let Ct
u,s,i represent the migrating cost of user u’ data from the

source satellite computing node s to the destination satellite computing node
i in time slot t, and we use the product of the migration data size and the
propagation delay from satellite s to satellite i. Then the migration cost at time
t can be expressed as follows:

Ct,mig
u =

S∑
s=1

xt
u,s

S∑
i=1

xt+1
u,i C

t,mig
u,s,i δs,i,∀u, i ∈ U, (19)

where Ct,mig
u,s,i = pt,mig

u × T t,prop
u,i . Without losing generality, we assume that

Ct
u,s,i = 0,∀s = i.

Service Deployment Cost If the service is not deployed on satellite node i, that
is dti = 0, the service deployment cost is:

Ct,deploy
u = χ{dt

i=0}θ, (20)

where χ{x} is an indicative function. If the event x is true, then χ{x} = 1;
otherwise, it is equal to 0. θ is a positive number that represents the cost of
service deployment.

The total cost for user u in time slot t is:

Ct
u = Ct,mig

u + Ct,deploy
u . (21)

Due to the scarcity of on-orbit communication resources, we introduce Carg
u

to represent the long-term cost budget across T time slots, which prevents users
from frequently migrating services in pursuit of low latency and is subject to the
following constraints:

lim
T→∞

1

T

T−1∑
t=0

Ct
u ≤ Cavg

u ,∀u ∈ U . (22)

Title Suppressed Due to Excessive Length 11

3.7 Problem Formulation

The total delay of user u in time slot t can be expressed as follows:

T t
u = T t,comm

u + T t,comp
u + T t,mig

u . (23)

The total delay for all users is:

F (t) =

U∑
u=1

T t
u. (24)

To optimize the average user response time within the cost budget, the dy-
namic service migration problem can be formulated as:

P1:

min
X1,...,X∞

lim
T→∞

1

T

T−1∑
t=0

F (t) (25)

s.t. T t,comp
u + T t,comm

u ≤ T t,max
u ,∀t ∈ T , (25a)

(1)− (3), (22). (25b)

However, solving problem P1 requires detailed information about satellite
nodes and the specific service requirements of each user in each time slot. This
includes the parameters of the user’s mission, the computing capabilities of
all satellite nodes, and the real-time status of the satellite network, making
it extremely challenging to obtain the optimal solution directly. In response, we
present two service migration strategies based on the completeness of the infor-
mation. The first is an offline service migration strategy, which accesses complete
future information in advance. The second is an online service migration strat-
egy, which only knows the information of the current time slot. We provide a
detailed introduction to two strategies in Section 4.

4 Algorithm Design

4.1 Dynamic Programming-based Offline Service Migration

In this section, we assume that complete data with all relevant information is
available. This section focuses on the offline service migration problem based on
this assumption. Consider a certain time period T , which includes consecutive
moments (t0, . . . , t0 + T − 1). Within this period, the offline service migration
problem can be expressed as:

P2:

min
Xt0 ,...,Xt0+T−1

t0+T−1∑
t=t0

F (t) (26)

12 Weiwei Gao(B), Ao Zhou, Jianing Tang, Yuanzhe Li, and Shangguang Wang

s.t.

S∑
s=1

xt
u,s = 1,∀u ∈ U , t ∈ {t0, . . . , t0 + T − 1} , (26a)

xt
u,s ∈ {0, 1} ,∀t ∈ {t0, . . . , t0 + T − 1} , (26b)

U∑
u=1

xt
u,s ≤ Ms,∀s ∈ S, t ∈ {t0, . . . , t0 + T − 1} , (26c)

1

T

t0+T−1∑
t=t0

Ct
u ≤ Cavg

u ,∀t ∈ {t0, . . . , t0 + T − 1} . (26d)

As shown in Fig. 2, a virtual graph illustrates the transformation of the
offline service migration problem into a shortest path problem. The problem
P2 can be equivalently transformed into a problem where F (t) constitutes the
weighted shortest path problem. The figure depicts the starting node as the
initial state, while each subsequent node represents potential states of satellite
computing nodes that the user may select in different time slots. In the time
slot t0, when calculating the weight of Xt0 , the state Xt0−1 of the previous
moment is known and fixed, so the weight depends solely on Xt0 . The node
D is a virtual node created to ensure the identification of the shortest path,
with the weight of the edge connected to the node D set to 0. The shortest
path corresponds to the optimal service migration strategy, and the sum of the
shortest path weights represents the minimum value of the objective function,
that is, the optimal value. We use the Dijkstra algorithm to solve the shortest
path problem described above.

4.2 Lyapunov Optimization-based Online Service Migration

First, we employ the Lyapunov optimization technique to transform the long-
term optimization problem into a series of short-term or real-time optimization
problems. By introducing drift-plus-penalty terms, decisions can be made even
in the absence of complete future information. We then use the best response up-
date method to solve the real-time optimization problem of the optimal selection
of satellite computing nodes in a given time slot.

Decoupling Long-Term Optimization Problems Using the Lyapunov
Optimization Algorithm The available information is incomplete in most
scenarios. Therefore, optimal long-term strategies must be continuously adjusted
based on system dynamics, including satellite mobility, satellite-ground network
conditions, and unstable service request patterns. Lyapunov optimization can
adapt to the dynamic changes of the system. First, we define a virtual queue for
each user u:

Θu(t+ 1) = Θu(t) +max
{
Ct

u − Cavg
u , 0

}
, (27)

Title Suppressed Due to Excessive Length 13

𝑋𝑡0−1 𝑋𝑡0 𝑋𝑡0+1 𝐷
𝐹(𝑡0) 𝐹(𝑡0 + 1) 0

Fig. 2. Transformation of shortest path problem when T=2.

where Θu(t) represents the queue backlog length of user u at time slot t, and

Θu(0) = 0. The quadratic Lyapunov function is: L(Θ(t)) = 1
2

∑U
u=1(Θu(t))

2.
L(Θ(t)) is a scalar value representing the number of queues in all queues. Smaller
values of L(Θ(t)) indicate a lower risk of overflow for queues and therefore higher
stability of the system. To further enhance the system’s stability, we define the
one-slot conditional Lyapunov drift function, which is defined as follows:

△(Θ(t)) = E [L(Θ(t+ 1))− L(Θ(t))|Θ(t)] , (28)

where Θ(t) = (Θ1(t), Θ2(t), . . . , Θu(t), . . . , ΘU (t)). If the drift function △(Θ(t))
converges to zero, it indicates that the long-term queue backlog constraint (21)
is satisfied, thus ensuring the stability of the queue. At any time slot t, regardless
of the satellite computing node selection strategy employed, the Lyapunov drift
satisfies the following inequality:

△(Θ(t)) ≤ △Θ + E

[
U∑

u=1

Θu(t)(C
t
u − Cavg

u)|Θ(t)

]
, (29)

where △Θ = 1
2

∑U
u=1(C

t
u − Cavg

u)2 for each time slot t. To optimize system
performance, we define the instantaneous objective function F (t) as a single-
slot Lyapunov penalty, comprising the sum of task delay. We now adopt the
Lyapunov drift-plus-penalty framework to solve problem P1. First, we give the
upper limit of the drift-plus-penalty:

△(Θ(t))+V · E [F (t)|Θ(t)] ≤ △Θ + V · E [F (t)|Θ(t)] +

E

[
U∑

u=1

Θu(t)(C
t
u − Cavg

u)|Θ(t)

]
,

(30)

where the non-negative parameter V serves as the trade-off factor between queue
stability and system delay. The lower the value of V , the greater the emphasis
on system stability.

Problem P1 can be further transformed into minimizing the upper bound of
drift-plus-penalty:

P3:

min
Xt

U∑
u=1

Θu(t)C
t
u + V F (t) (31)

s.t. (1)− (3), (24a). (31a)

14 Weiwei Gao(B), Ao Zhou, Jianing Tang, Yuanzhe Li, and Shangguang Wang

Algorithm 1 Online Satellite Computing Node Selection

1: Initialize: Θu(0) = 0,∀u ∈ U .
2: for each time slot t = 1, 2, . . . ,∞ do
3: Find

(
Xt

)∗
for problem P3 by Algorithm 2.

4: Update the length of virtual queues Θu(t+1) based on
(
Xt

)∗
according to (27).

5: end for

So far, we have transformed the long-term optimization problem P1 into a
real-time optimization problem P3. Algorithm 1 outlines the implementation of
the online satellite computing node selection algorithm. In each time slot t, by
solving P3, we achieve a near-optimal satellite computing node selection and
subsequently update the virtual queue of users served by the satellite to prepare
for computing in the next time slot. Given that the objective function of P3 is
non-linear and the variables are binary, P3 is classified as a non-linear integer
programming problem, which is typically NP-hard [20]. We employ the best
response update method to overcome this challenge and secure a solution within
each time slot.

Using Best Response Update Method to Solve a Single-Slot Optimiza-
tion Problem First, we denote the objective function of problem P3 as O

(
Xt

)
,

where Xt ∈ X t represents a feasible service migration strategy. Due to the large
scale of the in-orbit satellite constellation, we employ distributed best response
update technology to reduce the running time of service migration decisions and
achieve faster search for service migration nodes. In the distributed service policy
update, each user u ∈ U typically adopts a greedy approach, using the best re-
sponse update to optimize its migration decision deterministically. This method
significantly reduces time complexity, primarily because it leverages users’ in-
dividual effective decisions instead of conducting random decision exploration.
According to the computing delay Eq. (4), it is evident that resource competition
among multiple users will affect service performance. Inspired by the application
of non-cooperative games in computation offloading in mobile edge computing
environments [5], we transform problem P3 into a congestion game [7] with cost
functions among users. Let Xt

−u =
{
Xt

1, . . . , X
t
u−1, X

t
u+1, . . . , X

t
U

}
denote the

service migration decisions of all users except user u in time slot t. The service
migration problem faced by user u involves selecting a suitable satellite comput-
ing node with the goal of minimizing the objective function, which consists of
delay and migration cost, i.e.,

Xt
u = argmin

Xt
u

Ou

(
Xt

u,X
t
−u

)
,∀u ∈ U . (32)

When each migration decision is executed in a manner acceptable to users,
the service migration decision reaches a Nash equilibrium. To simplify the deci-
sion process, we propose a method based on the best response update [24].

Title Suppressed Due to Excessive Length 15

Definition 1 Given the service migration decisions of all other users Xt
−u, if

Ou((X
t
u)

∗,Xt
−u) ≤ Ou(X

t
u,X

t
−u), the service migration decision for user u is the

best response update [26].
Specifically, assume that when a user sends a service request to a connected

satellite node, the system assigns a unique ID to the service. Subsequently, we
update all service migration decisions in the random order of the IDs assigned
to the services. For user u, who has the smallest current index in the list of users
to be updated, we assign it to a preferred satellite node to minimize its current
cost as defined by Definition 1. Therefore, we can formulate the following service
migration decision update process:

Xt
u(λ+ 1) = argminOu

(
Xt

u,
{
Xt

1(λ+ 1), . . . ,

Xt
u−1(λ+ 1), Xt

u+1(λ), . . . , X
t
U (λ)

})
,

(33)

where λ is response update round. The pseudocode is shown in Algorithm 2.

Algorithm 2 Best Response Update Based Service Migration Policy Search

1: Input: P3

2: Output: Service migration decision (Xt)∗.
3: Initialization: Initialize the service migration decisions Xt(0) =

(Xt
1(0), X

t
2(0), . . . , X

t
U (0)) as randomly assigning satellite node for each user

and the response update iteration round as λ = 0.
4: while Xt(λ) does not reach a Nash equilibrium do
5: for user u = 1 to U do
6: Select the proper satellite computing node where user u can minimize its own

cost according to (33) and gain the corresponding migration decision Xt
u.

7: end for
8: Update λ = λ+ 1
9: Update Xt(λ+ 1) =

(
Xt

1(λ+ 1), . . . , Xt
U (λ+ 1)

)
10: end while
11: Return the service migration decision (Xt)∗.

Next, we analyze the computational complexity of Algorithm 2. From line 5 to
line 7, the system updates the service migration decisions of all U users for each
update iteration. Since each update involves a sorting operation, and considering
that there are S satellites, the complexity of each sorting operation is O(logS).
Consequently, the complexity of each iteration is O(US logS). Assuming the
algorithm requires I iterations to converge to the Nash equilibrium, the total
time complexity of Algorithm 2 is O(IUS logS).

5 Simulation

5.1 Simulation Settings

We randomly select 100 ground stations from the open-source SatNOGS project
as our ground users [21]. In the simulation, we configure a constellation of 288

16 Weiwei Gao(B), Ao Zhou, Jianing Tang, Yuanzhe Li, and Shangguang Wang

0 500 1000 1500 2000
3.5

4.0

4.5

5.0

5.5

6.0

A
v
er

ag
e

S
in

g
le

 S
lo

t
D

el
ay

 (
s)

V

 Offline Algorithm Online Algorithm

 Random Migration Nearest Satellite Node

Fig. 3. Average single slot delay under values of V.

satellites distributed across 12 orbits, with each orbit containing 24 satellites.
The orbital altitude of these satellites is 550 km, and their inclination is 53°. The
task size for each time interval follows a uniform distribution of [5e6, 1e7] bits.
The number of CPU cycles required for each bit task is 1000. The transmission
rate of an ISL follows a uniform distribution of [100M, 300M] bits / s, while the
computational intensity of the satellite follows a uniform distribution of [1e9,
2.4e9] megacycles / s. The inter-satellite transmission power is set to 0.1W, The
noise power is 2e−26, and the energy consumption constant k is 10−26.

The performance of our proposed offline and online algorithms is compared
with two benchmarks:

Random Migration This method randomly selects a new satellite node to
perform the task when the user’s nearest satellite changes.

Nearest Satellite Node This method consistently selects the nearest satellite
node to the user to perform the task. It deploys services on demand based on
the satellite node’s service deployment status.

5.2 Simulation Results

Figure 3 shows the average delay variation of four algorithms under different
Lyapunov optimization control parameter V values. We can observe that as the
V value increases from 1 to 2000, the average delay gradually decreases in the
online algorithm. This phenomenon indicates that a larger V value increases the
emphasis on delay, leading to a gradual reduction in delay.

Figs. 4(a) and 4(b) show the average delay and the average cost perfor-
mance of four algorithms in different time slots, respectively. The offline method
achieves the best results in terms of both average delay and average cost due to
its full use of future system information. The performance of the online method

Title Suppressed Due to Excessive Length 17

0 50 100 150 200

2

4

6

8

10

A
v

er
ag

e
S

in
g

le
 S

lo
t

D
el

ay
 (

s)

Time Slot

 Offline Algorithm Online Algorithm

 Random Migration Nearest Satellite Node

(a) Average delay v.s. Time slot

0 20 40 60 80 100 120
0

2

4

6

8

10

A
v

er
ag

e
S

in
g

le
 S

lo
t

C
o

st

Time Slot

 Offline Algorithm

 Online Algorithm

 Random Migration

 Nearest Satellite Node

(b) Average cost v.s. Time slot

Fig. 4. Average delay and average cost of each algorithm in different time slots.

10 20 30 40 50
0

50

100

150

200

250

300

A
v
er

ag
e

T
o
ta

l
D

el
ay

 f
o
r

A
 U

se
r

(s
)

Time Slot

 Offline Algorithm

 Online Algorithm

 Random Migration

 Nearest Satellite Node

(a) Total delay v.s. Time slot

1000 2000 3000 4000
0

100

200

300

400

M
ig

ra
ti

o
n

 T
im

es

Time Slot

 Offline Algorithm

 Online Algorithm

 Random Migration

 Nearest Satellite Node

(b) Migration times v.s. Time slot

Fig. 5. Relationship between delay and migration times in different time slots.

is closest to that of the offline method because the online method considers the
long-term payoff of current decisions. What’s more, the average delay varies with
each user, primarily due to fluctuations in the overall computing resource usage
of the satellite at different times. The Random Migration and the Nearest Satel-
lite Node perform similarly in terms of cost, the latter outperforms the former
in terms of delay because the latter usually has lower transmission latency.

Figure 5 illustrates the relationship between delay and migration times. Fig.
5(a) illustrates the total delay experienced by each user over a period of time,
while Fig. 5(b) displays the total migration times within 4000-time slots. Fre-
quent migrations (such as Random Migration) and infrequent migrations can
increase the total delay in completing tasks. In contrast, the proposed online
and offline algorithms achieve a more reasonable number of migrations through
optimization, effectively reducing the total delay in completing user tasks.

18 Weiwei Gao(B), Ao Zhou, Jianing Tang, Yuanzhe Li, and Shangguang Wang

6 Conclusion and Future Work

Given the dynamic nature of the satellite network and user-dependent state in-
formation services, this paper proposes a service migration strategy adapted to
the movement of satellites to ensure the continuity of service for the ground
user. Firstly, to balance low delay and low cost, we consider minimizing service
response time under long-term cost constraints. Secondly, based on the avail-
ability of information, we differentiate between two service migration scenarios:
one is the offline algorithm with complete future details, and the other is the
online algorithm with only current information available. For the offline ser-
vice migration algorithm, we transform it into the shortest path problem and
use dynamic programming to solve it. For online service migration, we initially
employ the Lyapunov optimization algorithm to decompose the long-term op-
timization problem into a real-time, single-time slot optimization problem that
is NP-hard. We use the best response update method to determine the optimal
satellite computing node selection for each time slot and then apply a distributed
approximation-based best response update to reduce computational complexity.
The simulation results indicate that, compared to other baseline methods, the
Lyapunov-based online service migration strategy significantly reduces the la-
tency of the service response, closely approaching the performance of the offline
algorithm. In future work, it will be interesting to investigate the energy con-
sumption of satellites when making migration decisions because on-orbit power
resources are scarce.

Acknowledgments. This work was supported in part by the National Natural
Science Foundation of China (U21B2016, 62032003, 62302262) and in part by
the Fundamental Research Funds for the Central Universities of China under
Grant 2024ZCJH11.

References

1. Benjaponpitak, T., Karakate, M., Sripanidkulchai, K.: Enabling live migration of
containerized applications across clouds. In: 2020 IEEE Conference on Computer
Communications (INFOCOM). pp. 2529–2538 (2020)

2. Bhattacherjee, D., Kassing, S., Licciardello, M., Singla, A.: In-orbit computing: An
outlandish thought experiment? In: Proceedings of the 19th ACM Workshop on
Hot Topics in Networks (HotNets). pp. 197–204 (2020)

3. Bhattacherjee, D., Singla, A.: Network topology design at 27,000 km/hour. In:
Proceedings of the 15th International Conference on Emerging Networking Exper-
iments and Technologies (CoNEXT). pp. 341–354 (2019)

4. Cao, X., Yang, B., Shen, Y., Yuen, C., Zhang, Y., Han, Z., Poor, H.V., Hanzo,
L.: Edge-assisted multi-layer offloading optimization of LEO satellite-terrestrial
integrated networks. IEEE J. Sel. Areas Commun. 41(2), 381–398 (2022)

5. Chen, J., Deng, Q., Yang, X.: Non-cooperative game algorithms for computation
offloading in mobile edge computing environments. J. Parallel Distrib. Comput.
172, 18–31 (2023)

Title Suppressed Due to Excessive Length 19

6. Chen, Q., Meng, W., Quek, T.Q., Chen, S.: Multi-tier hybrid offloading for
computation-aware iot applications in civil aircraft-augmented sagin. IEEE J. Sel.
Areas Commun. 41(2), 399–417 (2022)

7. Chen, X., Huang, J.: Database-assisted distributed spectrum sharing. IEEE J. Sel.
Areas Commun. 31(11), 2349–2361 (2013)

8. Chen, Y., Zhang, Q., Zhang, Y., Ma, X., Zhou, A.: Energy and time-aware in-
ference offloading for dnn-based applications in leo satellites. In: 2023 IEEE 31st
International Conference on Network Protocols (ICNP). pp. 1–6 (2023)

9. Chen, Y., Ma, X., Zhou, A., Wang, S.: Cooperative content caching and distribu-
tion for satellite cdns. In: 2023 IEEE 31st International Conference on Network
Protocols (ICNP). pp. 1–6 (2023)

10. Denby, B., Lucia, B.: Orbital edge computing: Nanosatellite constellations as a new
class of computer system. In: Proceedings of the 25th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS). pp. 939–954 (2020)

11. Deng, P., Gong, X., Que, X.: A bandwidth-aware service migration method in leo
satellite edge computing network. Comput. Commun. 200, 104–112 (2023)

12. Han, H., Wang, H., Cao, S.: Space edge cloud enabling service migration for on-
orbit service. In: 2020 12th International Conference on Communication Software
and Networks (ICCSN). pp. 233–239 (2020)

13. Handley, M.: Delay is not an option: Low latency routing in space. In: Proceedings
of the 17th ACMWorkshop on Hot Topics in Networks (HotNets). pp. 85–91 (2018)

14. Ji, Z., Wu, S., Jiang, C.: Cooperative multi-agent deep reinforcement learning for
computation offloading in digital twin satellite edge networks. IEEE J. Sel. Areas
Commun. 41(11), 3414–3429 (2023)

15. Kim, T., Sathyanarayana, S.D., Chen, S., Im, Y., Zhang, X., Ha, S., Joe-Wong, C.:
Modems: Optimizing edge computing migrations for user mobility. IEEE J. Sel.
Areas Commun. 41(3), 675–689 (2022)

16. Ksentini, A., Taleb, T., Chen, M.: A markov decision process-based service mi-
gration procedure for follow me cloud. In: 2014 IEEE International Conference on
Communications (ICC). pp. 1350–1354 (2014)

17. Lai, Z., Li, H., Li, J.: Starperf: Characterizing network performance for emerg-
ing mega-constellations. In: 2020 IEEE 28th International Conference on Network
Protocols (ICNP). pp. 1–11 (2020)

18. Lai, Z., Li, H., Zhang, Q., Wu, Q., Wu, J.: Cooperatively constructing cost-effective
content distribution networks upon emerging low earth orbit satellites and clouds.
In: 2021 IEEE 29th International Conference on Network Protocols (ICNP). pp.
1–12 (2021)

19. Li, Z., Jiang, C., Lu, J.: Distributed service migration in satellite mobile edge
computing. In: 2021 IEEE Global Communications Conference (GLOBECOM).
pp. 1–6 (2021)

20. Liberti, L.: Undecidability and hardness in mixed-integer nonlinear programming.
Rairo-Oper. Res. 53(1), 81–109 (2019)

21. Libre Space Foundation: Satnogs: An open source ground station and network
(2014), https://satnogs.org/, Last accessed 2014

22. Liu, C., Tang, F., Hu, Y., Li, K., Tang, Z., Li, K.: Distributed task migration op-
timization in mec by extending multi-agent deep reinforcement learning approach.
IEEE Trans. Parallel Distrib. Syst. 32(7), 1603–1614 (2020)

23. Lv, M., Peng, X., Xie, W., Guan, N.: Task allocation for real-time earth observation
service with LEO satellites. In: 2022 IEEE Real-Time Systems Symposium (RTSS).
pp. 14–26 (2022)

20 Weiwei Gao(B), Ao Zhou, Jianing Tang, Yuanzhe Li, and Shangguang Wang

24. Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ.
Behav. 13(1), 111–124 (1996)

25. Mwasinga, L.J., Le, D.T., Raza, S.M., Challa, R., Kim, M., Choo, H.: Rasm:
Resource-aware service migration in edge computing based on deep reinforcement
learning. J. Parallel Distrib. Comput. 182, 104745 (2023)

26. Ouyang, T., Zhou, Z., Chen, X.: Follow me at the edge: Mobility-aware dynamic
service placement for mobile edge computing. IEEE J. Sel. Areas Commun. 36(10),
2333–2345 (2018)

27. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4),
765–768 (1981)

28. Pfandzelter, T., Bermbach, D.: Celestial: Virtual software system testbeds for the
leo edge. In: Proceedings of the 23rd ACM/IFIP International Middleware Con-
ference (Middleware). pp. 69–81 (2022)

29. Qin, Z., Yao, H., Mai, T., Wu, D., Zhang, N., Guo, S.: Multi-agent reinforce-
ment learning aided computation offloading in aerial computing for the internet-
of-things. IEEE Trans. Serv. Comput 16(3), 1976–1986 (2022)

30. Song, Z., Hao, Y., Liu, Y., Sun, X.: Energy-efficient multiaccess edge computing for
terrestrial-satellite internet of things. IEEE Internet Things J. 8(18), 14202–14218
(2021)

31. Tao, B., Chabra, O., Janveja, I., Gupta, I., Vasisht, D.: Known knowns and un-
knowns: Near-realtime earth observation via query bifurcation in serval. In: 21st
USENIX Symposium on Networked Systems Design and Implementation (NSDI).
pp. 809–824 (2024)

32. Tuli, S., Casale, G., Jennings, N.R.: Pregan: Preemptive migration prediction net-
work for proactive fault-tolerant edge computing. In: 2022 IEEE Conference on
Computer Communications (INFOCOM). pp. 670–679 (2022)

33. Wang, S., Urgaonkar, R., Zafer, M., He, T., Chan, K., Leung, K.K.: Dynamic
service migration in mobile edge computing based on markov decision process.
IEEE/ACM Trans. Netw. 27(3), 1272–1288 (2019)

34. Wen, Y., Geiping, J., Fowl, L., Goldblum, M., Goldstein, T.: Fishing for user
data in large-batch federated learning via gradient magnification. In: 2022 ACM
International Conference on Machine Learning (ICML). pp. 1–17 (2022)

35. Wu, H., Yang, X., Bu, Z.: Task offloading with service migration for satellite edge
computing: A deep reinforcement learning approach. IEEE Access 12, 25844–25856
(2024)

36. Zhang, H., Liu, R., Kaushik, A., Gao, X.: Satellite edge computing with collab-
orative computation offloading: An intelligent deep deterministic policy gradient
approach. IEEE Internet Things J. 10(10), 9092–9107 (2023)

37. Zhang, X., Liu, J., Zhang, R., Huang, Y., Tong, J., Xin, N., Liu, L., Xiong, Z.:
Energy-efficient computation peer offloading in satellite edge computing networks.
IEEE Trans. Mob. Comput. 223(4), 3077–3091 (2023)

38. Zhu, X., Jiang, C.: Delay optimization for cooperative multi-tier computing in
integrated satellite-terrestrial networks. IEEE J. Sel. Areas Commun. 41(2), 366–
380 (2022)

